Try new release: COBISS+
 Shared database: COBIB.SI - Union bibliographic/catalogue database (No. of records: 5.029.354)

Selected record permalink

AuthorKlavžar, Sandi
Milutinović, Uroš
Petr, Ciril
Title Combinatorics of topmost discs of multi-peg Tower of Hanoi problem / Sandi Klavžar, Uroš Milutinović, Ciril Petr
Other titlesKombinatorika gornjih diskov posplošenega problema hanojskih stolpov
Type/contenttype of material article - component part
LanguageEnglish
Publication date2001
Physical descriptionstr. 55-64
NotesBibliografija: str. 63-64
Uncontrolled subject headingsmatematika / kombinatorika / teorija grafov / problem hanojskega stolpa / kombinatorične identitete / mathematics / combinatorics / graph theory / Tower of Hanoi problem / combinatorial identities
UDC519.1
Other class numbers
05A99
05A19
05C35 (MSC 2000)
SummaryObravnavane so kombinatorične lastnosti problema hanojskih stolpov z $n$ diski in $p$ stolpi. Vpeljane so preslikave, ki opisujejo zgornje diske regularnih stanj. Te preslikave so obravnavane z različnih vidikov. S pomočjo preštevanja povezav v grafih posplošenih hanojskih stolpov so dobljene tudi nekatere kombinatorične identitete.
Combinatorial properties of the multi-peg Tower of Hanoi problem on $n$ discs and $p$ pegs are studied. Top-maps are introduced as maps which reflect topmost discs of regular states. We study these maps from several points of wiew. We also count the number of edges in graphs of the multi-peg Tower of Hanoi problem and in this way obtain some combinatorial identities.
COBISS.SI-ID10774873
See publication: TI=Ars combinatoria ISSN: 0381-7032.- Vol. 59 (2001), str. 55-64