Try new release: COBISS+
 Shared database: COBIB.SI - Union bibliographic/catalogue database (No. of records: 5.029.354)

Selected record       number of loans: 1  Information on number of loans    permalink

AuthorPetr, Ciril
Title Kombinatorika posplošenih Hanojskih stolpov : doktorska disertacija / Ciril Petr
Other titlesCombinatorics of generalized Towers of Hanoi
Type/contenttype of material dissertation
LanguageSlovenian
Publication date2004
Publication and manufactureMaribor : [C. Petr], 2004
Other authorsKlavžar, Sandi
Milutinović, Uroš
Physical description102 str. : graf. prikazi ; 30 cm
NotesBibliografija: str. 93-98
Kazala
Univerza v Mariboru, Pedagoška fakulteta, Oddelek za matematiko in računalništvo
Uncontrolled subject headingsmatematika / računalništvo / kombinatorika / Hanojski stolpi / algoritem / najkrajša pot / grafi Sierpińskega / 1-popolna koda / mathematics / computer science / combinatorics / Towers of Hanoi / algorithm / shortest path / Sierpiński graphs / 1-perfect code
UDC519.1:004(043.3)
Other class numbers
05A15
05A19
68R10
90C35
94B25
94B35 (MSC 2000)
URL (Gradivo je dostopno na portalu dlib.si)
http://www.dlib.si/details/URN:NBN:SI:doc-FCUAES0E
URNhttp://www.dlib.si/?urn=URN:NBN:SI:doc-FCUAES0E
URN:NBN:SI:doc-FCUAES0E
SummaryVpeljemo popoln opis stanja posplošenih Hanojskih stolpov in delni opis, s katerim opišemo le razmestitev vrhnjih ploščic. Definiramo preslikavo iz popolnega v delni opis, ugotavljamo njeno surjektivnost, injektivnost, preštejemo elemente v sliki te preslikave, to je vse različne delne opise, računamo moč praslik, navedemo pogoj, kdaj delnemu opisu ustreza enoličen popolni opis, in preštejemo vse take delne opise stanj. Definiramo graf stanj posplošenih Hanojskih stolpov. Ogledamo si nekatere inducirane podgrafe. Na dva načina preštejemo vse povezave v grafu, preštejemo tudi število prestavitev posamezne ploščice ter izračunamo minimalno, maksimalno in povprečno stopnjo grafa. Definiramo pet strategij reševanja problema posplošenih Hanojskih stolpov, med katerimi sta tudi domnevno optimalni Framova in Stewartova strategija. Dokažemo, da so enakovredne glede na število premikov ploščic. Dokažemo obstoj in opišemo vse 1-popolne kode v grafih Sierpińskega, ki predstavljajo grafe stanj posplošenih Hanojskih stolpov s spremenjenim pravilom prestavljanja ploščic. Ta rezultat je posplošitev znanih rezultatov o grafih Hanojskih stolpov s tremi položaji, pri katerih pa je pristop bistveno drugačen. Podamo tudi optimalen dekodirni algoritem, ki za dano 1-popolno kodo in točko grafa ugotovi, ali je kodna točka. Če ni, poišče njej najbližjo kodno točko.
We introduce a complete description of the state of generalized Towers of Hanoi, and partial description in which only positions of the top-most discs are specified. We define a mapping from the complete to the incomplete description, analyze its surjectivity and injectivity, count the elements in the image of this map, i.e. all the different partial descriptions, compute the cardinality of the preimages, give the condition for a partial description to have the unique complete description, and count all such partial descriptions. We define a state graph of generalized Towers of Hanoi. We look at some of the induced subgraphs. We count the number of edges in the graph in two different ways. We also count the number of moves of a certain disc, and calculate the minimum, maximum and average degree of the graph. Wedefine five strategies for solving the generalized Towers of Hanoi problem, including the presumed optimal strategies of Frame and Stewart. We prove that they are equivalent with respect to the number of discs moves. We prove the existence and describe all 1-perfect codes in Sierpiński graphs, which represent the state graphs of the generalized Towers of Hanoi with modified rules for moving discs. This result is a generalization of previously known results about the graphs of Towers of Hanoi with three pegs, where the approach is intrinsically different. We also present the optimal decoding algorithm, which for a given 1-perfect code and a vertex of a graph decides whether it is a code vertex, and if not, find its nearest code vertex.
COBISS.SI-ID13020761

info Electronic version of document accessible or this is electronic resource

Holdings in libraries

View catalogue:  

info Select a library and check if the item is actually available for loan!
No. Institution/library name Place Acronym For loan Other holdings
National and University Library, Ljubljana Ljubljana NUK 001availability reading room: 1 Cop. National and University Library, Ljubljana
FMF and IMFM, Mathematical Library, Ljubljana Ljubljana MAKLJ 002availability reading room: 1 Cop. FMF and IMFM, Mathematical Library, Ljubljana
University of Maribor Library Maribor UKM 003availability reading room: 1 Cop. University of Maribor Library
Miklošič Library FPNM, Maribor Maribor PEFMB 004availability reading room: 1 Cop. Miklošič Library FPNM, Maribor