Try new release: COBISS+
 Shared database: COBIB.SI - Union bibliographic/catalogue database (No. of records: 5.075.292)

Selected record permalink

AuthorŽeljko, Matjaž
Title Minimal number of tori in geometric self-similar Antoine Cantor sets / Matjaž Željko
Other titlesMinimalno število torusov v geometrično sebi-podobni Antoinovi Cantorjevi množici
Type/contenttype of material article - component part
LanguageEnglish
Publication date2005
Physical descriptionstr. 109-113
NotesBibliografija: str. 113
Uncontrolled subject headingsmatematika / topologija / divja Cantorjeva množica / Lipschitzova homogenost / podobnost / koeficient podobnosti / definicijsko zaporedje / mathematics / topology / wild Cantor set / Lipschitz homogeneity / similitude / coefficient of similarity / defining sequence
UDC515.124.5
Other class numbers
54E45
54F65
57M30
57N10 (MSC 2000)
SummaryV definicijskem zaporedju standardne Antoinove Cantorjeve množice je v vsak torus vložena veriga štirih spletenih torusov. Če zahtevamo, da morajo biti torusi pravi geometrični torusi, ki so simetrično vloženi v torus na prejšnji stopnji, mora imeti veriga vloženih torusov vsaj 20 členov.
In a defining sequence of a standard Antoine Cantor set every topological torus has an embedded chain of four smaller topological tori. If we require the tori to be geometric tori symmetrically embedded in the torus of previous stage, the embedded chain must have at least 20 terms.
COBISS.SI-ID13782105
See publication: TI=JP Journal of Geometry and Topology ISSN: Y504-8346.- Vol. 5, no. 2 (2005), str. 109-113